
1 INTRODUCTION 

The goal of this component of the project is the development of an automated pipeline for the quantification 

of microscopy images of muscle fiber cross section. Human analysis of these images tends to be slow and 

prone to inconsistencies thereby introducing errors into the subsequent analysis related to number, size, 

shape, and other properties of the cells. Toward that end, we consider images such as that shown at the start 

of the pipeline in Figure 1 where healthy membranes present as bright white, the cytoplasm as gray, and 

the space between the cells as black. In regions of the images without highlighted membranes, the human 

eye can still easily detect the boundaries of cells. The diameters of cells are usually between 5 pixels and 

100 pixels. 

In order to quantify the images, the individual cells must first be identified. The difficulty of this task comes 

from varying qualities in the cells and membranes. If all the membranes were highlighted white in the 

image, this task would be simple. However, in many cases, the membrane appears only as bright as the 

random fluctuations within the cell interior. Cells can be perfectly round or concave, vary in diameter by 

an order of magnitude, and be surrounded by white membrane or black intercellular matrix.  

Our pipeline for the identification (or “segmentation”) of the cells is shown in Figure 1.   We begin by using 

a machine learning method known as a support vector machine (SVM) (Zaki and Meira 514-546) to provide 

an initial prediction of the class (membrane, cytoplasm, background, etc.) of each pixel in the image.  

Because of the variability in the manner in which membranes appear in these images, we identify two 

membrane classes: weak and strong.   After the SVM processing, these two classes are merged.    

Additionally, because the SVM processes every pixel independently of every other, the designation of a 

pixel’s neighbors plays no role in the how that pixel is classified.  As a result, we see small clusters of 

 

Figure 1: The image processing pipeline has three major steps: pixel-wise classification, morphological filtering, and 

membrane gap closure. Pixel-wise classification is achieved with a linear classifier. Each morphological filter is designed to 

correct mislabeled pixels. Gap detection finds faint membranes within oddly shaped components. 

 



manifestly mislabeled pixels.  Hence, morphological process is used to remove these errors.  Finally, 

irregularly shaped connected components of interior pixels are detected. These are typically clusters of 

fibers with weakly highlighted membrane between them. Local opening is used to detect and eliminate 

small bottlenecks, splitting the larger blob into component cells. If any irregular connected components 

remain, a large-structure erosion approach is used to virtually “squeeze” this blob until it is no longer 

connected. The area between the resulting connected components is labeled as membrane. 

The remainder of this report is organized as follows. The workings of the image processing pipeline are 

explained in the order of the operations: pixel-wise classification is followed by morphological filters and 

then membrane gap closure. Next, the results of the segmentation algorithm applied to a few test images 

are analyzed independently. 

 

2 PROCESSING PIPELINE DETAILS 

2.1 HISTOGRAM EQUALIZATION 
Before the pixel-wise classifier is applied, the 

contrast of the sample is adjusted to match that 

of the classifier’s training set. The gray-scale 

transformation has the form 𝑇(𝑥) =

 min{255, 𝑘𝑥}, where k is the number between 1 

and 3 for which the distribution of gray-values in 

the output is the closest to the distribution of 

gray-values in the training set. 

2.2 PIXEL CLASSIFICATION 
As illustrated in a magnified section from one of 

our images, there are four categories of pixels 

easily distinguishable by eye. Strong membrane 

pixels are generally white. Interior pixels are basically gray with a degree of somewhat random, noisy 

variability. They come in large, noisy clusters. Exterior pixels are black and often close to membrane pixels.  

Finally, what we are calling weak membrane pixels are brighter than interior and exterior pixels, and they 

come in thin bands. 

 

Figure 2: Illustration of four pixel classes of interest in this 

work 



The goal of the initial stage of the processing pipeline is to classify each pixel in an image as one of these 

four types.  Toward that end, we employ a support vector machine approach.  This method for classification 

requires a collection of hand labels pixels along with a set of features for each pixel capturing information 

about the neighborhood in which the pixel is located.  Based on this training data, a set of parameters 

defining the SVM is determined.  For each pixel in a newly acquired image, the features are computed and 

the SVM (along with the pre-determined parameters) are 

used to determine the class.  In our work to date, the feature 

vector is comprised of gray-level of the specific the pixel, 

as well as the mean, standard deviation, minimum, and 

maximum in 3x3 and 5x5 neighborhoods around the pixel.   

In Figure 3, we show a portion of the training data used for 

the results in Section 3.  The original grayscale image is 

provided in the top panel and the hand-labeled classes are 

given in the bottom with white being strong membrane, 

silver for weak membrane, gray for cell interior, and black 

for background.  Finally, purple pixels are those which we 

do not use in the training set as, to our eye, it is not 

immediately clear to which class they should belong. 

Before the classifier is applied, the contrast of the test 

image is adjusted using histogram equalization. 

The classifier we used is a linear multi-class Support 

Vector Machine implemented in Matlab’s machine 

learning toolbox (Mathworks). We used the linear kernel and the one-versus-all scheme for reducing the 

multiclass classification problem to several binary classification problems. A support vector machine is a 

generalization of the maximum margin problem; it finds an optimal separating hyperplane between two 

clouds of data. 

When there are more than two classes of data, the one-versus-all scheme creates one SVM for each class. 

In machine ‘X,’ class ‘X’ is the positive class and all other classes are fused into the negative class. If only 

machine ‘Y’ gives a positive prediction for a test datum, then the datum is labeled as belonging to class 

‘Y.’ Cases where there is no unique positive prediction are more complicated. 

 

 

Figure 3: Manual labeled pixels. White is for 

strong membrane, silver is for weak membrane, 

gray is for interior, and black is for exterior. 

Purple pixels are unlabeled. 

 

 

 



2.3 CLASS FUSION 
First, the two categories representing membrane are combined. The classifier considered them separate only 

because this was found to improve the accuracy. Though having an extra category increases the complexity 

of the multiclass SVM, 

strong membrane and 

weak membrane look 

different to both the human 

eye and the feature 

extractor. Since strength of 

the membrane plays no 

role in any of the following 

steps, the distinction 

between strong membrane 

and weak membrane can 

be safely erased.  As a 

result, the output of this stage of processing is comprised of three classes: membrane, cell interior, and 

background.    

The result of this portion of our pipeline are shown in Figure 4  In the left panel, we see the four class output 

of the SVM while the results after merging are provided in right subplot.  

2.4 MORPHOLOGICAL FILTERING 
Based on our initial evaluation, there are four types of error that tend to be made by the SVM processing: 

1. Pixels labeled as cell interior which are really membrane.   

2. Pixels labeled as background which are really membrane.  

3. Pixels labeled as background which are really cell interior. 

4. Pixels labeled as membrane which are really cell interior.   

To correct these errors, which tend to 

manifest themselves in small sized regions 

of misclassification, we have implemented 

a number of morphological filtering 

operations, as described in the following 

sections. 

2.4.1 Mislabeled Interior Pixels 

We have observed that no fibers have cross 

sectional area of less than four pixels. Thus, 

small components of interior pixels such as 

those shown in Figure 5, can be considered 

gaps in the membrane. The mislabeling is corrected with the following method: Consider the set of pixels 

belonging to the category of interior. For each connected component of this set, calculate the area. If the 

area is less than four pixels, re-categorize each pixel in the connected component as membrane. 

 

Figure 4: Initial 4-class segmentation in the left panel and class fusion on the right 

 

 

Figure 5: First type of labeling error: interior pixels that should be 

membrane 

 



2.4.2 Mislabeled Exterior Pixels 

It has been observed that true exterior pixels come 

in large clusters. As shown in Figure 6 the 

classification process can mislabel the darkest 

interior pixels as exterior. Also, each cell must be 

enclosed by membrane; some exterior pixels 

should actually be membrane. The mislabeling is 

corrected with the following algorithm: Consider 

the set of pixels belonging to the category of 

exterior. For each connected component of this set, 

calculate the area. If the area is less than fifteen 

pixels, re-categorize each pixel in the connected 

component as interior. Otherwise, consider the 

pixels in the component adjacent to interior pixels. These are re-labeled as membrane. 

Connected components of exterior which have the following two properties are also relabeled as interior: 

area less than 1.25 times the perimeter and a convex hull with area greater than 1.25 times the component’s 

area. 

2.4.3 Mislabeled Membrane Pixels 

It has been observed that a cell membrane encloses a cell. As shown in Figure 7, the classification process 

can mislabel the lightest interior pixels as membrane, even in the middle of a cell. The mislabeling is 

corrected by removing any connected components of membrane pixels which do not enclose any other 

region. 

 

  

Figure 7: Membrane components inappropriately labeled 

 

 

Figure 6: Stray exterior pixels should be interior; interior 

components should be surrounded by membrane 

 

 



2.5 MEMBRANE GAP CLOSURE 
As illustrated in Figure 8, there remains the need to close 

“gaps” in membranes left by the SVM processing.  

Indeed, even with the initial separation of the membrane 

into two classes, we see that the distinction between 

membrane and cell interior can still be is still rather subtle 

resulting in regions that need to be closed so as to 

properly identify individual cells.   

To address this issue, a two-step approach has been 

developed.  First, a second classifier has been developed 

to identify each connected component of interior pixels 

as either a cell or not a cell.  Second, a local morphology 

approach is applied to those regions not cells in order to 

identify the individual cell components. 

2.5.1 Cell or Not a Cell Classifier 

The goal of this component of the processing is to determine whether or not a given connected component 

of pixels labeled as interior constitute a likely cell based on the following features: 

1. Cell diameter defined to be the maximal Euclidean 

distance between two points on the boundary of the 

connected component. 

2. Total boundary curvature which is estimated by 

representing the connected component using a 

signed distance level set function, 𝐹(𝑥, 𝑦) , and 

computing the curvature as 𝜅 =
|𝐹𝑥𝑥𝐹𝑦

2−2𝐹𝑥𝐹𝑦𝐹𝑥𝑦+𝐹𝑦𝑦𝐹𝑥
2|

|∇𝐹|3  (Kimmel 53). 

3. Cell perimeter, estimated as the number of pixels on 

the boundary. 

4. Cell area, calculated by counting the pixels in the 

region. 

5. Ratio of the area of the region’s convex hull to the 

area of the cell itself, which is calculated using 

Matlab’s image processing toolbox (Mathworks). 

6. Mean brightness-value of the original image in the 

cell. 

7. Variance of brightness of the original image in the 

cell. 

For this problem, we use a random forest classifier (Liaw and Wiener). Figure 9 shows an example of 

a component likely to be a cell and an example of a components unlikely to be a cell. 

 

  

Figure 8: Bottom) after the morphological filters, the 

membrane has gaps 

 

 

Figure 9: The component highlighted in red needs to be split, the 

component highlighted in green does not, and the random forest 

classifier distinguishes between these two cases. 

 



2.5.2 Conditional Local Opening 

Components which contain multiple fibers 

tend to have separate lobes between which the 

undetected membranes end. The key to solving 

the membrane completion problem is finding 

the spaces between the lobes, as illustrated in 

Figure 10. The points on the boundary of the 

region between the lobes of individual cells 

usually have high curvature. 

The approach used to selectively close the 

bottlenecks between true cells is to examine 

neighborhoods of each point in the component. 

If using morphological opening on the part of 

the image in the neighborhood does close a 

bottleneck, then the pixels removed from the 

component by the opening are re-labeled as membrane pixels. 

This is done in the neighborhood of each pixel in parallel. The process is performed three times, using as 

neighborhoods disks of radius √2, 2, and √8. 

2.5.3 Erosion & Backfilling 

To detect larger gaps in the membrane, a component 

which is classified as not a cell is eroded with a large 

structuring element. If the result of the erosion has less 

than two connected components, then nothing 

happens. Otherwise, the original component is split 

into cells containing the results of erosion. 

After the separation, the split components of the blob 

must be restored: only the space between them 

becomes membrane. This is accomplished by 

incrementally increasing the sizes of the new 

components. Where this would cause the two to 

intersect, cell membrane is inserted and the 

component no longer grows in that direction. Figure 11 illustrates how a component is split by erosion 

and restoration. 

3 RESULTS 

3.1 QUALITATIVE 
Qualitatively, the output can appear to be a reasonable segmentation of the image. Figure 13 shows three 

such examples. However, if the test image has cell interiors significantly darker than in the training image, 

parts of cells may be mistaken for extracellular matrix, as is the case in the examples in Figure 12. 

Furthermore, the process consistently over-segments.  

 

Figure 10: Gaps lie between points on the boundary which have 

high curvature and are close together 

 

 

Figure 11: The erosion method for bottleneck detection 

shrinks the original region (black outline) into multiple 

shrunken components (red), which must be restored 

(green) to fill most of the original region. 

 



 

The results depend strongly on the quality of the initial classification of pixels. If the test image after the 

gray-scale transformation is still darker or of higher contrast than the training data, then the algorithm does 

not work well. Even in the best cases, it may split fibers where it shouldn’t—the source of error may be the 

“cell or not” classifier. Another approach, besides improving the “cell or not” classifier, would be to develop 

a method to merge neighboring components where appropriate. 

There are some cases where the algorithm fails to identify neighboring cells as distinct. A possible remedy 

for this problem would be to use the gap closure techniques before applying the filter which removes 

membrane. Another approach would be to use an initial classifier which does not mislabel large, faint 

regions of membranes. 

 

   

   

Figure 12: Results in bad cases. Top) Histogram-adjusted inputs. Bottom) Comparison of output and manual 

labelling--dark blue represents membrane and exterior, light blue represents pixels mislabeled as interior, dull 

yellow represents cell interior, and bright yellow represents pixels mislabeled as exterior or membrane. 

   

   

Figure 13: Results in good cases. Top) Histogram-adjusted inputs. Bottom) Comparison of output and manual 

labelling--dark blue represents membrane and exterior, light blue represents pixels mislabeled as interior, dull 

yellow represents cell interior, and bright yellow represents pixels mislabeled as exterior or membrane. 

 



3.2 QUANTITATIVE 
To quantify the performance of the algorithm, it is necessary to examine the distribution of areas of fibers 

identified. To this end, images were segmented by hand while the automatic segmentation ran. The manual 

labeling was performed on forty-two small test images, twenty-seven of which yielded qualitatively 

reasonable results. 

Overall, the algorithm does over-segment, even when the last step, which involves splitting blobs, is 

omitted. Figure 14 shows by how much the algorithm over-segments, both before and after the last step. As 

the figure shows, after the last step, the computed number of cells can be as much as 2.5 times the correct 

value. This shows the algorithm’s tendency to mis-categorize small regions where cell membrane and 

exterior intersect as parts of cell interior, creating many tiny false cells. 

Despite the problem of over-segmentation, the last step does improve the distribution of cell sizes. The 

Kolmogorov-Smirnov statistic, a measure of difference between distributions, is defined as the maximum 

of the difference between two cumulative distributions. Figure 15 shows the distribution of Kolmogorov-

Smirnov distances between the data segmented by the pipeline and the data segmented manually. Both on 

average and in the worst cases, the final splitting steps make the distributions of the automatic and manual 

segementations more similar. 

The ACC metric measures how often the pipeline’s output 

agrees with the manual labeling. Let TP be the number of 

pixels that both ways label as cell interior, FP be the number 

of pixels that the pipeline incorrectly labels as cell interior, 

TN be the number of pixels that both label as not cell 

interior, and FN be the number of pixels that the pipeline 

incorrectly labels as other than cell interior. Note that the 

nature of the human error in the manual segmentation makes 

 

Figure 14: The distribution of error in the number of computer-

segmented cells with respect to the numbers of hand-counted cells. 

 



FP artificially high. The definition is 

𝐴𝐶𝐶 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
. (Pang, Ozkucur and 

Ren) 

In most cases, the last step improves the 

ACC slightly. Figure 17 shows the 

distribution of ACC values before and after 

the last step. On average, about 90 percent 

of the pixels are labeled correctly. Much of 

this 10 percent disagreement comes from 

the boundaries of cells, where the manual 

segmentation and automatic segmentation 

disagree on where the membrane begins 

and the cell interior ends.  

Another measure of accuracy is DICE. The 

definition is 𝐷𝐼𝐶𝐸 =  
2∗𝑇𝑃

2∗𝑇𝑃+𝐹𝑃+𝐹𝑁
. (Pang, 

Ozkucur and Ren) 

The last step has an insignificant impact on 

the DICE score of the image. Figure 16 

shows the distribution of DICE values. The 

average DICE value is almost 85 percent. 

Disagreement in where cell ends and 

membrane begins contributes to this 

relatively low score.  

 

Figure 15: Distribution of errors in the CDF of the data 

 

 

Figure 16: Distribution of DICE values 

 



 

3.3 A GOOD CASE 
In the case of Figure 19, the results 

are good. Automatic segmentation 

yields a mean cross-sectional area 

of 86 pixels while manual labeling 

yields a mean of 74 pixels. What 

should be 135 cells are under-

segmented into 125 components. 

The ACC is 0.9223, and the DICE 

is 0.8699. The histograms are 

shown in Figure 18—the 

Kolmogorov-Smirnov statistic is 

0.0708. As shown in Figure 19, the 

results of automatic and manual 

segmentation are quantitatively 

comparable in this case, though there are a few errors. 

Near the top-right corner of the image, there is a cluster of cells with dim membranes. The initial 

classification recognized some of the membrane, but that section of membrane was removed because it was 

disconnected from the rest of the cell membrane. This caused two separate cells to be labeled as one. 

 

 

Figure 17: Distribution of ACC values 

 

 

Figure 18: Histograms of cell sizes segmented (left) manually and (right) automatically in the good 

case 
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Figure 19: Pipeline summary in a good case. A) Original Image. B) Result of pixel-wise classification. C) Output of morphological 

filters. D) Output of gap closure methods. E) Comparison of ground truth and algorithm output—dark blue represents pixels which 

are labeled both ways as other than cell interior, light blue represents pixels which are incorrectly labeled as cell interior by the 

algorithm, dull yellow pixels are labeled both ways as cell interior, and bright yellow pixels are incorrectly labeled as cell interior 

by the algorithm. 

 



3.4 A BAD CASE 
In the case of Figure 21, the 

results are poor. While the 

automatic generation yields a 

mean cross-sectional area of 86 

pixels, the manual labeling yields 

a mean of 619 pixels. Figure 20 

shows the histograms of cell sizes 

generated by both manual and 

automatic segmentation—the 

Kolmogorov-Smirnov statistic is 

0.7750. The algorithm over-

segments what should be 13 cells 

into 80 components.  The DICE is 

0.6812, and the ACC is 0.8624. 

In this case, as displayed in Figure 21 part B, the pixel-wise classifier mistakes large regions of cell 

interior for cell exterior. In later steps, membrane is inserted around these regions of error, causing 

single cells to be interpreted as clusters of cells interspersed with exterior regions. Furthermore, parts of 

the interface between bright membrane and true exterior are misinterpreted as cells. These two factors 

lead to high error. 

 

Figure 20: Histograms of cell sizes segmented (left) manually and (right) automatically in the bad 

case 
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Figure 21: Pipeline summary in a bad case. A) Original Image. B) Result of pixel-wise classification. C) Output of 

morphological filters. D) Output of gap closure methods. E) Comparison of ground truth and algorithm output—dark blue 

represents pixels which are labeled both ways as other than cell interior, light blue represents pixels which are incorrectly 

labeled as cell interior by the algorithm, dull yellow pixels are labeled both ways as cell interior, and bright yellow pixels are 

incorrectly labeled as cell interior by the algorithm. 

 



 

4 CONCLUSION 

An algorithm for the fully automatic detection of fibers has been developed. It has mixed results. In 

some cases, the output of algorithm agrees almost completely with manual labelling. In other cases, the 

statistics of the output are unacceptably far from the truth. 

The method used to detect the cells in the input image can be summarized in three parts. The first part 

is to categorize each pixel independently, given various characteristics of the image in the neighborhood 

of said pixel. Next, this initial segmentation is refined by applying morphological filters: removing small 

connected components and making sure each cell is enclosed by membrane. The last step is to close any 

narrow bottlenecks in components which are deemed unlikely to be correctly segmented. 

4.1 FUTURE DIRECTIONS 
Firstly, the gap closure methods do not detect every missing cell membrane, even when the true 

membrane is relatively bright. A curve evolution approach would have the advantage of incorporating 

gray-level information into the way the gaps are closed, but this has been implemented and found to be 

unreliable. 

Secondly, the cell-or-not classifier is insufficiently accurate. Furthermore, it does not distinguish 

between clusters of falsely conjoined cells and other types of non-cell components. A better way to 

categorize the components would improve the performance. 

Thirdly, the initial categorization by independently considering each pixel can lead to egregious error. It 

may be worth investigating applications of region-based methods instead. 
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